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3D Detector Response Calculations Motivation and Overview

Detector Field Response

LArTPC detector field response in an ideal1 nutshell:
• Ar electrons are ionized and drift toward anode wire planes.
• Electron drift paths are nominally perpendicular to wire planes.
• Within a few pitch distances (∼cm) the pattern of wires significantly

distorts the nominally uniform field.
• At the same distance scale the drifting electrons induce measurable

currents on nearby wires.
• Current waveforms are readout with shaping and digitizing electronics.
• Noise happens.

The size and shape of the induced currents depend strongly on
details on the scale of 0.1µ and 0.1mm.

1With some complicating and important reality ignored.
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3D Detector Response Calculations Motivation and Overview

Two Scales of Granularity

Two scales matter:

simulation point response convolved over energy depositions
(eg. Geant4 hits) of each simulated event. Need
field response calculation on paths defined on a
∼0.1mm grid.

reconstruction response averaged over a uniform charge
distribution filling each “wire region” (±1

2 pitch
around a wire) and going out to ± ∼3cm.
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3D Detector Response Calculations Motivation and Overview

Response Depends on Two Electrostatic Fields

~Eweight ,i a constructed field for each wire of interest i
• wire i placed at 1V, all other electrodes at 0V.
• this is a consequence of “reciprocity”

~Edrift a real, electrostatic field arising from the applied
high voltage.
• Nominally chosen to obtain a desired drift velocity, which is

driven in part by electron lifetime in LAr and max drift
distance.

• Wire plane bias voltages are chosen to obtain desired
“transparency” of each plane to the passing of drifting
electrons.
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3D Detector Response Calculations Motivation and Overview

The Response: Induced Currents

Induced current on a wire Ii in response to drifting charge q:

Shockley-Ramo:

Ii(t) = q~vq(t) · ~Eweight ,i

Drift velocity:

~vq = µ(|Edrift |, T )× ~Edrift

Given static ~Edrift and ~Eweight ,i :
• Induced current in a wire depends only on the drift path.
• Drift path depends only on its starting point.

→ Charge diffusion makes the bookkeeping “challenging”.
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3D Detector Response Calculations Existing 2D Field Calculation

2D Field Calculations

Weighting Field of a U Wire

Equipotential weight (green) and drift paths
(orange), Bo Yu using Garfield

• Finite Element Method, high
precision over limited 2D region.

• Reproduces major field features,
especially away from wire planes.

• Relatively fast calculation, allows
exploring (2D) parameter space.

• Used for LArSoft’s simplistic
simulation and signal
reconstruction.

• Used Xiaoyue’s improved
simulation and Xin’s improved
signal reconstruction.
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3D Detector Response Calculations New 3D Field Calculation

Why Calculate Fields in 3D?

• Some µBoone V-plane features seen in data possibly due to
3D wire structure.

• Generally validate 2D calculations and evaluate
uncertainties.

• Explore inherently 3D, non-symmetric detector edge effects.
• Explore novel geometries more sensitive to 3D.

• extra planes, hybrid collection/induction planes.
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3D Detector Response Calculations New 3D Field Calculation

A New Field Calculation Method2

Switch from FEM→ BEM: Boundary Element Method
• Difficult to scale FEM to 3D and required “large” volumes.
→ few mm scale: ∼days running

• BEM scales by electrode surface area.
→ few cm scale: ∼hours running

Almost user friendly software to do the calculations:

https://github.com/brettviren/larf

(LARF = LAr + Field)

2To us.
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3D Detector Response Calculations New 3D Field Calculation

3D Field Calculation Procedure

1 Define wire geometry
2 Generate surface mesh on wires and other electrodes
3 Solve surface boundary conditions for each field
→ again, one drift and one weighting per wire

4 Define electron drift path starting points
5 Step through drift field to produce drift paths.
6 Sample weighting field for a given wire, along a path to

produce corresponding current waveform.
7 Repeat for many paths, tabulate for simulation and form

average for reconstruction.

Some visualization of these steps −→
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3D Detector Response Calculations New 3D Field Calculation

Surface Mesh

• Includes parameterized meshing for wires and simple shapes.
• Can roll-your-own or use eg. GMSH to generate your own.
• Mesh size drives accuracy and precision (and run time).
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3D Detector Response Calculations New 3D Field Calculation

Drift Path Views
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3D Detector Response Calculations New 3D Field Calculation

Stepping to Produce Paths

• Steps use 5th order Runge-Kutta with fixed step size (0.1µs).
• Each RK sub-step evaluates potential on 7 points to get gradient.
• Steps terminate if they “hit” a wire.
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3D Detector Response Calculations New 3D Field Calculation

Coarse Response Functions - U-Wire
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Field Responses - U Wire

wire region 0
wire region 1
wire region 2
wire region 3
wire region 4
wire region 5

Average over 3mm in longitudinal direction and paths w/in ±1.5mm of wire.
• Wire region 0 is ±1.5mm around central U-wire.
• Wire regions 1-5 progressively further in transverse direction.
• Wire regions 6-9 not shown here.
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3D Detector Response Calculations New 3D Field Calculation

Coarse Response Functions - V-Wire
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• Some end-of-track jaggies need checking, maybe due to “lucky
symmetry”.
→ more severe example in W-wires
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3D Detector Response Calculations New 3D Field Calculation

Coarse Response Functions - W-Wire
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• One set of paths right on line of symmetry take an extra-long time.
⇒ Need to fill in with more intermediate paths.

• Non-unipolar signals from charge in wire region ≥ 1
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3D Detector Response Calculations New 3D Field Calculation

Choice of Paths for Fine Response Functions

• Define region covering minimum
unique patch of wire crossing
pattern.

• Step through drift field for each
start point to make path.

• For each drift path, sample
3Nwires = 30 weighting fields.
Really, reuse 3 boundary
condition solutions, as can offset
drift paths by n× pitch.

• For simulation: map
Gaussian-diffused energy
deposition into triangle and
convolve.

• For reconstruction: form averages
over wire-regions.

Starting points
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Choice of Paths for Fine Response Functions
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3D Detector Response Calculations New 3D Field Calculation

Choice of Paths for Fine Response Functions
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3D Detector Response Calculations New 3D Field Calculation

Choice of Paths for Fine Response Functions
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3D Detector Response Calculations New 3D Field Calculation

To Do List for Field Response

Roughly in order of priority
1 Finish the “t.b.d.”s from the previous slide.
2 Implement DUNE wire patterns (trivial) and run LARF to catch

up with the µBoone calculations (easy, but requires learning
and some beefy workstation).

3 Evaluate uncertainties in simulation and signal
reconstruction between use of 2D and 3D fields.

4 If major problems found, develop 3D simulation and signal
reconstruction.

5 Look at detector edges, eg between two abutted APAs.
6 Look at novel wire geometry (4 plane, 2 collection planes,

etc).
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Wire-Cell Prototype and Toolkit and LArSoft Integration Prototype and Toolkit

Wire-Cell Prototype and Toolkit

Prototype:
• Initial code structure, data model, build system.
• Emphasis is on the fast development of novel ideas.

Toolkit:
• More careful code structure and data model.
• Emphasis on long-term, multi-person development.
• Careful dependency management (concerned about single-user

laptops, Linux clusters and up to HPC environments).
• Careful development of interfaces and layers for internal clarity, ease of

integration, choices of code entry points.
• Adds a multi-threaded, data-flow programming paradigm option

(still experimental).

Some novel dev still done in prototype, porting to tk ongoing,
novel dev directly in tk is now an option.
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Wire-Cell Prototype and Toolkit and LArSoft Integration Prototype and Toolkit

Major Wire-Cell Features

• Real-world noise subtraction (µBoone).
• Waveform signal processing and simulation.
• 3D imaging of ionization activity (core Wire-Cell technique).
• 3D pattern recognition (tracks/showers).
• 3D final particle ID, energy reconstruction.

Except for the last, all exists at some level in prototype and some
already exists in the toolkit.
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Wire-Cell Prototype and Toolkit and LArSoft Integration Integration

LArSoft

• LArSoft = art framework + LArTPC simulation, reconstruction
and other framework modules and services.

• Modules/services tend to either directly hold
implementation code or call out to independent toolkits
(eg, PANDORA and soon Wire-Cell).

• Used by most (all?) FNAL-based LArTPC experiments.
• Large, dedicated support team: 3-4(?) FNAL FTE, more if

include art group and software build groups.
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Wire-Cell Prototype and Toolkit and LArSoft Integration Integration

Wire-Cell / LArSoft Integration Strategy

• Wire-Cell is and will stay independent from LArSoft.

• Will follow David Adams lead of pushing art Services
• Provide Wire Cell implementation of David’s noise subtraction service.
• Investigate David’s simulation service and likely follow suit.
• Naturally leverages the toolkit’s Interface-oriented design.

• Integration code lives in larwirecell a package fully following the
Tao of Fermilab Software.

• A UPS “product” wirecell holds built Wire Cell Toolkit binary libs.
• Initial hack by me builds it on fnal.gov computers.
• Getting cleaned up by FNAL experts (Lynn Garren).

• Initial target is noise subtraction (Brian Kirby).
• Xin just finished “porting” this to the toolkit.

• Next is signal processing (??), then simulation (??).
• Porting of signal processing to toolkit is just starting.
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